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1 | INTRODUCTION

Despite extensive research and clinical efforts, breast can-
cer remains a challenging public health issue and the
largest cause of oncologic mortality among women.!! Its
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hold prognostic value that may complement OncotypeDX. Polarimetric analy-
sis of breast cancer surgical samples allows for the quantification of collage-
nous stroma abundance and organization. We examine intratumoural collagen
abundance and alignment along the tumor-host interface for 45 human sam-
ples of invasive ductal carcinoma categorized as low or higher risk by
OncotypeDX. Furthermore, we probe the separatory power of collagen align-
ment patterns to classify unlabeled samples as low or higher OncotypeDX risk
group using a linear discriminant (LD) model. No significant difference in
mean collagen abundance was found between the two risk groups. However,
collagen alignment along the tumor boundary was found to be significantly
lower in higher risk samples. The LD model achieved a 71% total accuracy and
81% sensitivity to higher risk samples. Prognostic information extracted from
the stromal morphology has potential to complement OncotypeDX as an easy-
to-implement prescreening methodology.
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therapeutic management is complicated by the heteroge-
neous nature of tumor behaviors and patient outcomes
within its subclasses.[?! Tailoring treatment regimens in
light of this diversity has long been the goal of personal-
ized medicine in oncology. However, in order to realize
the full potential of individualized therapy, there is a
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need to develop robust prognostic tools that are accurate,
affordable and logistically implementable.

One successful approach in the context of breast can-
cer is a genomic test known as OncotypeDX. This test,
performed on surgical specimens, assesses the expression
levels of 21 genes (16 cancer-related and 5 reference) to
predict the likelihood of cancer recurrence within a given
number of years (5years for node-positive cases or
10 years for node-negative).!> * While validation is ongo-
ing for other subgroups (eg, HER-2 positive tumors), cur-
rently OncotypeDX serves as a prognostic and predictive
tool in hormone receptor positive and HER-2 negative
invasive breast cancer capable of guiding clinical deci-
sions regarding the benefit of adjuvant systemic chemo-
therapy.!®! The output of the test is a numerical Risk
Recurrence Score on a scale of 1 to 100, subcategorized
into low, intermediate and high-risk tumors. !

However, despite the adoption of OncotypeDX into the
standard of care in certain settings, there remain some
unaddressed challenges. First, as mentioned above, the
test is typically limited to invasive, hormone receptor posi-
tive, HER-2 negative tumors. These criteria evidently
exclude a significant subgroup of breast cancer patients. In
addition, the test is very expensive at approximately $4000
USD per test.!® This limits its incorporation into some
clinical workflows, particularly in developing economies
or among populations lacking private insurance.”) In
addition, there remains a degree of uncertainty as to the
test's accuracy in cases of highly heterogeneous tumor in
which gene expression may be spatially variable.* °!

As a result of these limitations, there is a need for the
development of additional, complementary prognostic
markers for breast cancer. Optical approaches, though
perhaps less specific in tumor classification than the
detailed expression information obtained by genomic
approaches, have potential as a complementary tool.
These methods are particularly useful because of their
high-resolution visualization of various tissue constitu-
ents. In addition, relatively large regions of tissue can be
assessed, addressing spatial heterogeneity concerns, and
often with high contrast and in near real time.!*! Impor-
tantly, optical techniques can be used to assess character-
istics of the tumor microenvironment (TME) which have
shown potential as a source of prognostic information.'*
2] Indeed, solid tumors do not exist in isolation: it has
long been known that the tissues within the tumor mass
itself and those surrounding the tumor play an essential
role in maintaining its viability, growth characteristics
and metastatic spread potential !> 13!

One compartment of the TME that has shown prom-
ise in terms of prognostication is the collagenous stroma.
Collagen is a fibrous connective tissue that provides
structural support to its surroundings. Higher relative

abundance of intratumoural collagen, known as tumor-
stroma ratio (TSR), has been associated with worse
patient outcomes in breast and other cancers.'* ! In
addition to intratumoural abundance, the morphology
(or organization) of the collagen around the tumor
(in the peri-tumoural region referred to as the leading
edge), has also been considered as a biomarker for dis-
ease progression and/or prognosis.'" 22! In order to
grow, tumors must invade the surrounding healthy tis-
sue; this invasion is at least in part facilitated by the deg-
radation of the extracellular matrix (ECM) in this
boundary region. Therefore, it has been hypothesized
that reorganization (induced disorganization), of the col-
lagen in the leading edge of the tumor is indicative of dis-
ease progression and is a precursor for further tumor
invasion.[2% 24!

Previous efforts by our group have demonstrated the
potential of a novel form of polarimetric imaging to ana-
lyze the organization of collagenous stroma in breast can-
cer samples.”> 2! For example, we have used this
polarized light imaging approach to develop a quantita-
tive stromal architecture signature (SAS) score capable of
differentiating myxoid from sclerotic stroma within the
TME. Herein we extend this approach to examine the
correlation of polarimetrically derived collagen morphol-
ogy metrics with OncotypeDX risk groups. The two met-
rics, one related to the TSR (abundance of collagenous
stroma) within the tumor, and the other related to the
collagen morphology (alignment) in the leading edge
regions, were used to probe the differences between
samples of different OncotypeDX risk scores.

The purpose of this research is to address the issues
associated with OncotypeDX previously outlined above:
its high (and frequently prohibitive) cost, and the spatial
heterogeneity of breast tumors. The polarimetric tech-
nique for examining the stroma is inexpensive, rapid and
can be performed locally on site without the necessity of
sending samples for testing and awaiting results; further,
neither technical expertise nor significant maintenance
by clinical staff are needed. The methodology is also
capable of whole slide analysis, potentially capturing
more information than is available with a simple biopsy.
Using the polarimetry method to separate between low
and higher risk groups may eventually provide a robust
method for prescreening that can streamline patients and
prioritize the genomic testing for those who would stand
to benefit (ie, those at higher risk). Apart from increasing
our knowledge of the dynamics between breast tumors
and their surrounding environment, demonstrating a cor-
relation between stromal morphology changes and a clin-
ically relevant recurrence likelihood score could serve as
an impetus for the development of further quantitative
polarimetric tools for prognosis and study of the TME.
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2 | EXPERIMENTAL
2.1 | Ethics

Institutional ethics approval was obtained from partici-
pating hospital institutions (University Health Network
and Sunnybrook Hospital, both in Toronto, Canada). The
need for patients' consent to examine the breast cancer
histopathology samples was waived by the ethics board
due to the retrospective nature of the study and complete
anonymization of personal health information.

2.2 | Samples

This study used 45 human surgical samples of invasive
ductal carcinoma (IDC) prior to any chemo- or radiation-
therapy. There were 27 samples from the OncotypeDX
low-risk group, 14 in the intermediate group, and four in
the high-risk group. For the analysis described below,
intermediate and high were pooled together and referred
to as the higher risk group; this allowed us to test our
method's differentiation ability between the low-risk
patients vs all others (most relevant group separation
based on clinical considerations®). Samples were
formalin-fixed, paraffin embedded, unstained and 4.5 pm
thick. To avoid polarization imaging artifacts, the
unstained samples were chemically dewaxed®”! and were
then ready for polarimetric imaging, with no further
processing nor the use of a coverslip. Tissue slides adja-
cent to the polarimetrically imaged ones were H&E sta-
ined and imaged at x20 on an Aperio ScanScope CS
(Leica Biosystems, Germany) for the pathologist's assess-
ment of the regions of interest (ROIs).

2.3 | ROIs-selection

The selection of suitable ROIs for our analysis was
intended to quantify (1) intratumoural collagen abun-
dance, and (2) collagen alignment/orientation in the lead-
ing edge of peri-tumoural regions (Figure 1). Relative
collagen abundance was hypothesized to be higher in the
higher risk OncotypeDx group, as previous work has cor-
related an increase in collagenous stroma abundance
(quantified via TSR) with worse patient outcomes in
breast cancer.'*°! To enable (1), tumors were contoured
using the H&E stained adjacent slides that were then
computationally coregistered to the polarimetric images
using affine transforms and MATLAB's (Mathworks,
Massachusetts) image processing toolbox. In an attempt to
account for the intrasample heterogeneity, multiple tumor
regions from within each slide were selected. For example,
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FIGURE 1
stained IDC surgical samples were imaged at X20 and tumor ROIs

Sample annotation and imaging process. A, H&E

were contoured (purple region). B, Leading edge region was
calculated by an expansion of the tumor contour followed by
removal of the original contour (purple band region). C, D,
Adjacent unstained slides were imaged using the polarized light
microscopy system. E, H&E image and associated annotations are
computationally coregistered with the polarized light microscopy
image and the corresponding ROIs were transferred (yellow arrow).
White features on black background pictorially represent collagen
fibers on the polarimetric image. IDC, invasive ductal carcinoma;
ROIs, regions of interest

when a sample contained multiple tumor morphologies
(eg, ill-defined tumor edge vs well-circumscribed dense
nests of cancer cells), both were used in ROI selection.

The purpose of selecting (2), the leading edge ROIs, was
that collagen reorganization and remodeling facilitating
tumor invasion and growth has been shown to occur pri-
marily along the boundaries of tumors in breast and other
cancers.|?'2* 25 21 gy examining the collagenous align-
ment within the site of this reorganization, we again aim to
identify differences between samples with low and higher
OncotypeDX risk recurrence scores. Once regions of tumor
were contoured, leading edge regions were obtained by the
computational expansion of the contours. This was done by
dilating the contours with a circular structural element with
a radius of 150 pm. After the expansion, the original tumor
contour was removed from the dilated region, leaving the
leading edge “strip” 150 pm wide (Figure 1B). Different
dilation thicknesses were explored but 150 pm was selected
as the compromise between increasing the total area under
consideration vs limiting the influence of collagen that was
distant from, and thus likely less representative of tumor
interaction with the host stroma.

2.4 | Polarimetric imaging

Imaging was done using the previously described polari-
metric microscopy setup and methodology.'?> 2*! Polarized
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light microscopy (PLM) is a well-established approach for
enhancing the contrast of birefringent materials such as
collagen. An AxioZoom V16 microscope (Zeiss, Germany)
was fitted with two linear polarizers (Thorlabs,
LPVISE100-A) and controlled with motorized rotation
mounts (PRM1.MZ8, Thorlabs, New Jersey). The IDC
slides were placed between the polarizers, which were
kept at 90° relative to each other (crossed polarizer orien-
tation). The crossed polarizer pair was then rotated
through 90° in 5° increments; this important process facili-
tates the removal of image contrast variations that depend
on polarizer orientation relative to breast tissue's birefrin-
gent (collagen) structures, enabling high-contrast visuali-
zation of the latter. After each rotation, an image of the
sample was taken. The resultant series of images is then
analyzed, and the relevant metrics were extracted (see
below). Further details of this implementation of the PLM
have been recently described.[*> 2¢!

2.5 | Image analysis and quantitative
metrics extraction

Two metrics, namely abundance and alignment, were
extracted from the polarimetric images for each sample.
Both were previously used by our group to assess collage-
nous stroma in breast cancer,[zs’ 26l and each examines a
distinct feature.

2,51 | Abundance metric

The first is related to the amount of birefringent connec-
tive tissue (likely collagen) within the tumor. It is the
fraction of the total analyzed region that contains bire-
fringent tissue (Figure 2B). Its numerical scale ranges
from 0 to 1 (where 1 would indicate an area entirely filled
with birefringent tissue). A pixel from the stack of angu-
lar measurements that represents a birefringent tissue
has an intensity pattern given by:

Intensity o sin?(21), (1)

where T represents the angle between the optical axis of the
structure and the analyzer polarization direction. Therefore,
whether a particular pixel represents a birefringent struc-
ture can be assessed with a “goodness-of-fit” comparison
between the observed intensity pattern of the angular
images and Equation (1). Once calculated, this metric can
be used to segment the collagenous stroma from other bio-
logical compartments, and the collagen density can be cal-
culated. Due to recent evidence linking increased collagen
content in tumors to poorer patient outcomes'*! the

FIGURE 2
at X20. A, White light image of the unstained tissue sample. B,

Representative images of an IDC sample all taken

Polarimetrically derived image of the birefringent tissue (collagen),
used to calculate the collagen abundance in tumor ROIs. This is a
binarized image where “on” pixels (white) indicate the presence of
a birefringent tissue regions with many “on” pixels have a high
collagen abundance metric. C, Polarimetric alignment image, used
to calculate the alignment of collagen in the leading edge ROIs.
Low values (yellow) indicate a higher degree of alignment between
neighboring structures. D, H&E stained adjacent sample with the
tumor contour shown in blue and the leading edge region as the
darker band surrounding the contour. IDC, invasive ductal
carcinoma; ROIs, regions of interest

abundance metric was calculated for the ROIs within the
tumor contours (Figure 1A), yielding a single number for
each of the 45 samples. This tested whether the
polarimetrically quantified amount of intratumoural
collagen differs between OncotypeDX risk groups.

2.,5.2 | Alignment metric

The second calculated metric (Figure 2C) describes the
relative orientation of all the birefringent structures in a
given FOV. The direction of optical axis for a birefringent
structure is related to the value of © at which the mea-
sured transmitted intensity is maximal. Once the optical
axis direction has been computed, the alignment metric,
related to the mean angular difference between collage-
nous structures in a 30X 30pm sliding window, is
calculated by:

MADg

P B(i)—-B(j
2= Zi(n—lgl) (J)’ @)

2

where n is the number of pixels in the sliding window
and B(x) is the birefringence orientation at pixel x. Here,
x indicates the linear index of a pixel in the sliding
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window. As a result of the T = 5° increments used in the
imaging protocol, the alignment metric can range from
0 (perfect alignment of all the collagen in the window) to
5 (maximal difference, random orientation). The metric
was calculated in the leading edge ROIs. Contrasted with
the abundance metric, which yields one number per
region, a distribution of alignment scores is generated for
the leading edge. Therefore, every sample yields a
histogram of collagen alignment along the tumor edge.

2.6 | Statistical methods

First, the abundance metric was calculated for each sam-
ple's intratumoural collagen. The values from the low
and higher risk groups were then compared using a two-
sample nonparametric Kolmogorov-Smirnov (KS) test.
Next, the leading edge peri-tumoural collagen alignment
distributions were analyzed in two ways: using single-
number KS comparisons of averaged mean alignments
(similar to the abundance analysis above), and then more
extensively accounting for their full spectrum. For the lat-
ter, we calculated the cumulative density functions
(CDFs) for the alignment of collagen in the leading edge
for each sample. CDFs from the same OncotypeDX risk
group were then combined, allowing for the investigation
of differences in the overall distributions of alignment,
instead of just comparing means.

Finally, after assessing the differences in the leading
edge collagen alignment for low and higher risk groups,
and thus generating population distributions of this metric
for the two groups, we addressed the more difficult prob-
lem of predicting a tumor's OncotypeDX risk group based
on the collagen alignment. To accomplish this, we trained
a linear discriminant (LD) model using the information-
rich alignment CDF formalism. However, incorporation of
the entire CDF into the feature-space for a model would
result in a predictive feature dimensionality that was pro-
hibitively high given the modest number of samples
(n = 45). We thus calculated the root mean squared error
(RMSE) between every sample's CDF and the combined
“population” CDFs for the low and higher risk groups.
Although this does lose some of the information contained
in the histograms, using the RMSE enabled us to compare
the similarity of the collagen alignment distributions while
limiting our predictor variable dimensionality from 60 (the
number of bins used in the CDF histograms) to 2 (the
RMSE between the sample and the low and higher risk
groups). As we are dealing with a limited dataset of unique
patients, keeping a low-predictor dimension was an impor-
tant part of mitigating model over-fitting.

The two RMSEs were calculated for each sample and
then served as predictor variables for training an LD

model. To offset the effects of the differences in population
size for the two groups (27 and 18, respectively) and to
maximize the sensitivity to higher risk samples, the cost
function used in training the LD model weighed the mis-
classifications of high-risk samples x3 greater than misclas-
sifications of low-risk samples. The x3 weight was chosen
because the low and higher risk population sizes differed
by a factor of 1.5, which was a starting point for the cost
function alteration; further, misclassification of a higher
risk tumor as a low risk has significant clinical conse-
quences. The resultant x3 differential weighting in the cost
function penalty thus served as the compromise between
total accuracy and the false negative rate. To further pre-
vent over-fitting and to evaluate its performance, we sub-
jected the model to 3-fold cross-validation. Briefly, this
entailed dividing the data into three groups of equal size
and with equal proportion of low and higher risk samples.
Two groups were then used to train the LD model. The
withheld group was then used as a test of the performance
of the model. This process was then repeated two more
times, holding out one of the other groups respectively.

3 | RESULTS AND DISCUSSION

Figure 3A shows the collagen abundance within the
tumor regions. Despite a slightly higher mean in the
higher risk samples (p = 0.51 and 0.61 respectively),
the KS test did not indicate statistically significant separa-
tion between the risk groups. This is somewhat at odds
with previous literature reports that show that the rela-
tive abundance of collagenous intratumoural stroma to
be prognostically informative in breast cancer.14 1]
However, many of these studies use small, tightly defined
ROIs in locations subjectively deemed to be the most
invasive pathology in the sample. It is likely that the large
ROIs used in this study, with the intentional inclusion of
intrasample heterogeneity, increased the variance of the
populations and reduced the significance of their separa-
tion. The average cumulative tumor area analyzed per
sample was 62.5mm?”. For context, a review of TSR prog-
nostication studies by Mesker et al’” reported ROIs of
roughly 9mm?, and a recent analysis of collagen align-
ment in renal cell carcinoma used ROIs on the order of
1mm?.*% By avoiding ROIs based on a narrowly defined
(and often subjective) selection criteria and by sampling a
relatively large area per slide, we aimed to limit bias and
generate more representative results inclusive of tumor
heterogeneity; the potential downside of such large ROI
selection in the increased variance in the results that may
mask the low- vs higher risk OncotypeDx intergroup dif-
ferences. Comparatively large ROIs were chosen for the
purpose of minimizing subjectivity and operator bias.
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FIGURE 3 Boxplots showing the mean of the two different
polarimetry-derived metrics of A, intratumoural collagen
abundance (p = 0.51, 6 = 0.23, median = 0.61 and p = 0.61,

o = 0.06, median = 0.61, respectively) and B, peri-tumoural
collagen alignment (p = 1.9, 6 = 0.82, median = 2.2 and p = 2.5,

o = 0.31, median = 2.5, respectively). * indicates a statistically
significant difference (P < .01) using the two-sample KS test. For
each box plot, the central line shows the median of the groups, the
box denotes the second and third quartiles, the whiskers indicate
the first and fourth quartile, respectively, and outliers are
demarcated by symbols. Although some differences exist in the
intratumoural collagen abundance (A), it is only in the alignment
of peri-tumoural collagen that a statistically significant difference
between the low and higher risk groups was noted (B). The outlier
(with a value close to zero for both metrics) had a high amount of
mucin surrounding the tumor with very little collagen present for
our birefringence analysis. Color is indicative of risk group. KS,
Kolmogorov-Smirnov

The involvement of a single pathologist at this stage
seemed reasonable considering these large ROIs and the
pathologist's relatively straight forward task (selecting
and contouring tumor-cell rich areas). A final impetus for
the proposed ROI selection criteria and size was to miti-
gate the possible confounding effects from structures of
high organization but low-diagnostic power such as ves-
sels or nerves. At this stage, such regions have not been
excluded. These may indeed present a source of variabil-
ity, for example, artificially increasing the alignment of
mostly misaligned collagenous stroma. However, in addi-
tion to the intentional choice of large ROIs, we expect
their effect to be relatively small for two reasons: (1) the
stromal abundance is much higher compared to such ves-
sels and nerves®'l; (2) these are likely present across all
samples (low or higher risk groups), so their impact on
the group differentiation should be limited.

Figure 3B shows the collagen alignment in the leading
edge for the low and higher risk groups. Here, the KS test
did indicate statistically significant (P < .01) separation
between the risk groups. A lower degree of collagen align-
ment in the higher risk samples is in line with previous
tumor-collagen studies and has been shown to be indica-
tive of more aggressive disease.'"" 2°-23! This is particularly
encouraging in light of our efforts to objectively choose
large ROIs to account for intrasample heterogeneity:
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FIGURE 4 The aggregated CDFs for the alignment of the
leading edge collagen for low (blue) and higher (orange) risk
groups. Of note is the greater proportion of aligned collagen for the
low-risk group. In subsequent analysis, the root mean squared error
(RMSE) is calculated between each sample's CDF and the
“population” CDFs of the two risk groups. CDF, cumulative density
functions

despite the resultant increase in sample variance that this
introduces, a significant separation between the two group
was still demonstrated. A potential causal link between
the OncotypeDx risk score and collagenous stroma mor-
phology is found in the two “invasion” genes, stromelysin
3 and cathepsin L2, from the 2l-gene panel that
OncotypeDX considers. These genes promote the invasion
of the tumor into the host tissue through a reorganization
of the surrounding collagen.®? Stromelysin 3, a matrix
metalloproteinase, is involved in the degradation of colla-
gen and other constituents in the ECM and is often over-
expressed in breast cancer.!*> 33!

As mentioned in the methods section, the analysis of
collagen alignment in the leading edge ROISs resulted in a
distribution of values for each sample. The analysis sum-
marized in Figure 3B collapsed these distributions into a
single value (their mean) and compared the differences
in the means between the risk groups. Although statisti-
cally significant results were obtained, there is more
information in the actual distributions than can be cap-
tured in such single number representation. Figure 4 thus
shows the aggregated CDFs for the two risk groups, dem-
onstrating where the risk group distributions differ. Com-
pared to the higher risk group, the low-risk group
histogram is left shifted indicating a higher prevalence of
aligned collagen. The maximum difference between the
CDFs occurs at the median of the low-risk alignments
(alignment metric = 2.26) and has a value of 0.126.
Therefore, collagen in the leading edge of a low-risk sam-
ple has a 12.6% greater chance of being more aligned
with its neighbors than collagen from the higher risk

group.
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The separation that occurs between the two CDFs in
Figure 4 motivated their use in the effort to retrospec-
tively classify a patient's sample as low or higher risk. As
mentioned previously, incorporation of the entire 60 bins
of the histogram as predictive features would result in a
prohibitively high dimensionality of predictor variables.
This challenge motivated the use of the RMSE between
each sample and the two aggregate class histograms, as a
way of retaining much of the separatory information that
the distributions contained.

The position of the samples in the RMSE space is
shown in Figure 5A. The vertical axis represents the differ-
ence between each sample's leading edge collagen align-
ment CDF and the combined low-risk CDF; similarly, the
horizontal axis is the difference between each sample and
the combined higher risk CDF. As expected, the higher
risk samples (orange markers) tend to have larger values
along the vertical axis (as their distributions are, on aver-
age, more different from the combined low-risk distribu-
tions). Analogously, the low-risk samples (blue markers)
have larger values along the horizontal axis. This RMSE
data served as input for the LD model training. Note that
as 3-fold cross-validation was used during the computation
of the LD model, only two thirds of this data were in use
at a time (as the third group was held out to act as a test
set). The line of separation between the classes, as found
by the LD model, is represented by the dashed line in
Figure 5A. Any sample that lies in the region above the
line is classified as higher risk by the model, and those

(A)
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FIGURE 5 A, Scatter plot showing the RMSE of each sample
relative to the low and higher risk aggregate CDFs. Each point
represents a sample, and color indicates OncotypeDX risk group.
The dotted line shows the separation boundary from the LD model.
Samples that lie above it were classified as higher risk, samples
below as low risk. B, Confusion matrix showing the number of
correctly (diagonal, blue and orange) and incorrectly (off-diagonal,
red) samples classified by the LD model (trained with an emphasis
for higher risk sensitivity to correctly classify higher risk samples).
While only achieving 71% total accuracy, the model exhibited 83%
sensitivity to the higher risk group. Note that the marker with the
asterisk represents three low-risk samples. CDF, cumulative density
functions; LD, linear discriminant
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below it are classified as low risk. Stemming from the sig-
nificantly increased weight of misclassifications of higher
risk samples as low risk, the model does not optimize total
accuracy, but rather sensitivity to the higher risk samples.
That is, the total overall classification accuracy was
sacrificed in order to decrease the occurrence of false nega-
tives in classifying higher risk samples (since such a “mis-
take” would be more clinically significant than
misclassifying a low-risk sample as higher risk). Figure 5B
summarizes the performance of the LD model in a confu-
sion matrix. Although total accuracy (71%) is reduced due
to modest low-risk accuracy classification (63%), a high
sensitivity to the higher risk samples was achieved (83%).
This is encouraging in approaching the ~10% false nega-
tive rate that is required in other breast cancer contexts
such as sentinel lymph node assessment,**! and in light of
the sensitivity and specificity of OnctypeDX to high-risk
samples, ~93% and 30% respectively,”™ using 10-year
recurrence as the quantifiable endpoint.

Polarimetric imaging for collagen analysis has become
quite widespread. Studies often involve an imaging meth-
odology that fully characterizes the polarimetric properties
of the tissue by the determination of the Mueller
matrix.[**! Technologically, Mueller polarimetry is more
complex, and the results can be difficult to interpret. This
is contrasted with the simpler rotating-crossed-linear-
polarizers method and direct derivation of collagen metrics
used here. Comparing the two techniques in terms of their
resultant information content, Mueller approaches give a
complete characterization of the tissue polarization prop-
erties at the expense of more complex methodology. The
added value of this extra information depends on the task-
specific application. For the assessment of collagenous
stroma abundance and alignment, our imaging approach
provides specific metrics that describe these features while
allowing for simple, inexpensive and rapid methodology.

There have been several other studies probing the
link between OncotypeDx risk scores and clinicopatho-
logic or histopathologic features.**>”! These features
often include Nottingham grade, tumor size, lobular or
tubular subtypes, TSR and age, among others. The corre-
lation of OncotypeDx risk score with these features have
consistently shown reasonably accurate results (~70%-
80% total accuracy). The LD model proposed here agrees
quite well with these results, which is particularly
encouraging given that this discriminatory power arose
from only one feature, as opposed to the 7 to 12 features
utilized in other studies'**~3"); this suggests a potentially
large source of previously untapped, polarimetrically
obtainable, information about tumor behavior and prog-
nosis. Future work will examine a larger clinical dataset
and a broader array of polarimetric variables to build
upon the promising results shown here.
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OncotypeDx is a powerful prognostic tool that has lent itself
well to widespread clinical adoption. However, despite its
overall integration into clinical workflows, there remain
persistent problems with the technique.”® For example,
several studies have remarked on the “black box” nature of
the genetic test, as individual protein expression data is not
made available.!’ The cost of this test can also be prohibi-
tive in resource-limited environments. As a result, further
stratification of patient risk that can complement
OncotypeDX would be clinically rewarding.

As a first step to such stratification, we have
polarimetrically  investigated the abundance of
intratumoural collagen and the alignment of collagen in
the leading edge and assessed their correlations with
OncotypeDX risk group for a cohort of human IDC surgi-
cal samples. Using a novel form of PLM, collagen align-
ment in the leading edge was found to be significantly
lower (P < .01) in higher OncotypeDX risk groups. Inter-
estingly, no such difference was found for the collagen
abundance from the tumor regions.

As mentioned above, previous studies have correlated
OncotypeDx risk score with clinicopathological variables
and shown reasonably accurate results in the separation of
risk groups. In the present study, a LD model based on col-
lagen alignment derived from PLM images has been shown
to be 83% sensitive to low-risk groups, with an overall
(albeit reduced) accuracy of 71%, comparing very well to
these studies!®>”! These results motivate future studies
investigating using this novel PLM technique to study mor-
phological changes within TME, and their correlation with
clinically and scientifically important outcomes.
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